Spectral edge behavior for eventually monotone Jacobi and Verblunsky coefficients

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Circular Jacobi Ensembles and Deformed Verblunsky Coefficients

Using spectral theory of unitary operators and the theory of orthogonal polynomials on the unit circle, we propose a simple matrix model for the following circular analogue of the Jacobi ensemble:

متن کامل

Verblunsky coefficients with Coulomb-type decay

We also consider the monic orthogonal polynomials Φn(z). They obey the Szegő recursion Φn+1(z) = zΦn(z)− αnΦn(z), where Φn(z) = z Φn(1/z). The αn are called Verblunsky coefficients and they belong to the unit disk D = {z ∈ C : |z| < 1}. Conversely, every α ∈ ×n=0D corresponds to a unique measure. See [14, 15, 16] for background material on orthogonal polynomials on the unit circle (OPUC). In th...

متن کامل

Meromorphic Szeg5 functions and asymptotic series for Verblunsky coefficients

/" f2" ei~ dO) (1.3) D(z) = e x p / t ~ log(w(0)) U~ \ J 0 e --z Not only does w determine D, but D determines w, since limr,1 D(rei~ i~ exists for a.e. 0 and ~(o) = ID(e {~ I ~. (1.4) Indeed, D is the unique function analytic on D = { z l l z I <1} with D ( 0 ) > 0 and D nonvanishing on D so that (1.4) holds. Given d#, we let ~n be the monic orthogonal polynomial and {,~:~n/llOnllL2(du). The ~...

متن کامل

Meromorphic Szegő Functions and Asymptotic Series for Verblunsky Coefficients

We prove that the Szegő function, D(z), of a measure on the unit circle is entire meromorphic if and only if the Verblunsky coefficients have an asymptotic expansion in exponentials. We relate the positions of the poles of D(z)−1 to the exponential rates in the asymptotic expansion. Basically, either set is contained in the sets generated from the other by considering products of the form, z1 ....

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Spectral Theory

سال: 2019

ISSN: 1664-039X

DOI: 10.4171/jst/273